About: Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
title
  • Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach
Creator
  • Liu, Qian
  • Zhang, Yue
  • Chen, Canping
  • Jiang, Shanmei
  • Li, Mengyuan
  • Uddin, Md
  • Wang, Xiaosheng
  • Zhang, Zhilan
  • Chen, Cai
  • Cao, Wenxiu
  • Du, Beibei
  • Liu, Yijing
topic
source
  • MedRxiv
abstract
has issue date
bibo:doi
  • 10.1101/2020.06.10.20127472
has license
  • medrxiv
sha1sum (hex)
  • a3347e9ba021f0b37f23108d64e05b9bddff0120
schema:url
resource representing a document's title
resource representing a document's body
is http://vocab.deri.ie/void#inDataset of
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software