AttributesValues
type
value
  • In this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. For some particular restricted dissimilarity function the corresponding d-Choquet integral with respect to a fuzzy measure is just the ‘standard’ Choquet integral with respect to the same fuzzy measure. Hence, the class of all d-Choquet integrals encompasses the class of all ‘standard’ Choquet integrals. This approach allows us to construct a wide class of new functions, d-Choquet integrals, that are possibly, unlike the ’standard’ Choquet integral, outside of the scope of aggregation functions since the monotonicity is, for some restricted dissimilarity function, violated and also the range of such functions can be wider than [0, 1], in particular it can be [0, n].
subject
  • Functional analysis
  • Fuzzy logic
  • Measure theory
  • Exotic probabilities
  • Expected utility
  • Definitions of mathematical integration
  • University of Paris faculty
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software