About: Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries ‘YL’ and ‘ML’, respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11738-019-2915-9) contains supplementary material, which is available to authorized users.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Toona sinensis is a deciduous tree native to eastern and southeastern Asia that has important culinary and cultural values. To expand current knowledge of the transcriptome and functional genomics in this species, a de novo transcriptome sequence analysis of young and mature leaf tissues of T. sinensis was performed using the Illumina platform. Over 8.1 Gb of data were generated, assembled into 64,541 unigenes, and annotated with known biological functions. Proteins involved in primary metabolite biosynthesis were identified based on similarities to known proteins, including some related to biosynthesis of carbohydrates, amino acids, lipids, and energy. Analysis of unigenes differentially expressed between young and mature leaves (transcriptomic libraries ‘YL’ and ‘ML’, respectively) showed that the KEGG pathways of phenylpropanoid, naringenin, lignin, cutin, suberin, and wax biosynthesis were significantly enriched in mature leaves. These results not only expand knowledge of transcriptome characteristics for this valuable species, but also provide a useful transcriptomic dataset to accelerate the researches on its metabolic mechanisms and functional genomics. This study can also further the understanding of unique aromatic metabolism and Chinese medicinal properties of T. sinensis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11738-019-2915-9) contains supplementary material, which is available to authorized users.
Subject
  • Omics
  • Flavanones
  • Online databases
  • Mantodea of Asia
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software