About: Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences   Goto Sponge  NotDistinct  Permalink

An Entity of Type : schema:ScholarlyArticle, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
isDefinedBy
has title
  • Using Support Vector Machine and Evolutionary Profiles to Predict Antifreeze Protein Sequences
Creator
  • Ma, Zhiqiang
  • Yin, Minghao
  • Zhao, Xiaowei
Source
  • PMC
abstract
has issue date
bibo:doi
  • 10.3390/ijms13022196
bibo:pmid
  • 22408447
has license
  • cc-by
sha1sum (hex)
  • 058c0fc94ded8fa4e7a302081c3ea738d16a4b1a
schema:url
resource representing a document's title
has PubMed Central identifier
  • PMC3292016
has PubMed identifier
  • 22408447
schema:publication
  • Int J Mol Sci
resource representing a document's body
is schema:about of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software