AttributesValues
type
value
  • Industry 4.0 has shifted the manufacturing related processes from conventional processes within one organization to collaborative processes across different organizations. For example, product design processes, manufacturing processes, and maintenance processes across different factories and enterprises. This complex and competitive collaboration requires the underlying system architecture and platform to be flexible and extensible to support the demands of dynamic collaborations as well as advanced functionalities such as big data analytics. Both operation and condition of the production equipment are critical to the whole manufacturing process. Failures of any machine tools can easily have impact on the subsequent value-added processes of the collaboration. Predictive maintenance provides a detailed examination of the detection, location and diagnosis of faults in related machineries using various analyses. In this context, this paper explores how the FIWARE framework supports predictive maintenance. Specifically, it looks at applying a data driven approach to the Long Short-Term Memory Network (LSTM) model for machine condition and remaining useful life to support predictive maintenance using FIWARE framework in a modular fashion.
Subject
  • Maintenance
  • Distributed computing problems
  • Production and manufacturing
  • Safety engineering
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software