AttributesValues
type
value
  • With the exponential growth of users and user-generated content present on online social networks, fake news and its detection have become a major problem. Through these, smear campaigns can be generated, aimed for example at trying to change the political orientation of some people. Twitter has become one of the main spreaders of fake news in the network. Therefore, in this paper, we present a solution based on Text Mining that tries to find which text patterns are related to tweets that refer to fake news and which patterns in the tweets are related to true news. To test and validate the results, the system faces a pre-labelled dataset of fake and real tweets during the U.S. presidential election in 2016. In terms of results interesting patterns are obtained that relate the size and subtle changes of the real news to create fake news. Finally, different ways to visualize the results are provided.
subject
  • United States
  • Exponentials
  • Anti-intellectualism
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software