AttributesValues
type
value
  • Background: The increasing importance of software for the conduct of various types of research raises the necessity of proper testing to ensure correctness. The unique characteristics of the research software produce challenges in the testing process that require attention. Aims: Therefore, the goal of this paper is to share the experience of implementing a testing framework using a statistical approach for a specific type of research software, i.e. non-deterministic software. Method: Using the ParSplice research software project as a case, we implemented a testing framework based on a statistical testing approach called Multinomial Test. Results: Using the new framework, we were able to test the ParSplice project and demonstrate correctness in a situation where traditional methodical testing approaches were not feasible. Conclusions: This study opens up the possibilities of using statistical testing approaches for research software that can overcome some of the inherent challenges involved in testing non-deterministic research software.
subject
  • Statistics
  • Data
  • Information
  • Statistical tests
  • Research methods
  • Genetically modified organisms
  • 1973 introductions
  • Mathematical and quantitative methods (economics)
  • Molecular biology
  • Formal sciences
  • Nonparametric statistics
  • Arab inventions
  • Categorical variable interactions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software