AttributesValues
type
value
  • Fanconi-associated nuclease 1 (FAN1) removes interstrand DNA crosslinks (ICLs) through its DNA flap endonuclease and exonuclease activities. Crystal structures of human and bacterial FAN1 bound to a DNA flap have been solved. The Pseudomonas aeruginosa bacterial FAN1 and human FAN1 (hFAN1) missing a flexible loop are monomeric, while intact hFAN1 is homo-dimeric in structure. Importantly, the monomeric and dimeric forms of FAN1 exhibit very different DNA binding modes. Here, we interrogate the functional differences between monomeric and dimeric forms of FAN1 and provide an explanation for the discrepancy in oligomeric state between the two hFAN1 structures. Specifically, we show that the flexible loop in question is needed for hFAN1 dimerization. While monomeric and dimeric bacterial or human FAN1 proteins cleave a short 5′ flap strand with similar efficiency, optimal cleavage of a long 5′ flap strand is contingent upon protein dimerization. Our study therefore furnishes biochemical evidence for a role of hFAN1 homodimerization in biological processes that involve 5′ DNA Flap cleavage.
Subject
  • X-ray crystallography
  • EC 3.1
  • EC 3.1.4
  • Materials science
  • Synchrotron-related techniques
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software