About: Background To determine if hot, humid ambient conditions impact filtering facepiece respirators' (FFRs') fit, and to evaluate differences in physiologic and subjective responses between N95 FFRs and P100 FFRs. Methods Twelve subjects had physiologic monitoring and subjective perceptions monitored over 1 hour of treadmill exercise (5.6 km/h) in an environmental chamber (35°C, relative humidity 50%) wearing an N95 FFR, P100 FFR, or no respirator. Respirator quantitative fit testing was done before and after exercise. Results There was no significant difference in pass rates for both FFRs on initial fit testing, but subjects who passed were more likely to fail the postexercise test with N95 FFRs (P = .01). Wearing FFRs increased the temperature of facial skin covered by the FFR (P = .009) and breathing discomfort (P = .002). No significant differences were noted in other measured variables (heart rate, respiratory rate, oxygen saturation, transcutaneous carbon dioxide level, rectal temperature, global skin temperature, core temperature, and subjective perceptions) between controls and FFRs and between FFR models. Conclusion After 1 hour of exercise in hot, humid ambient conditions, P100 FFRs retained better fit than N95 FFRs, without additional physiologic or subjective impact. Wearing FFRs under these conditions does not add to the body's thermophysiologic or perceptual burdens.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Background To determine if hot, humid ambient conditions impact filtering facepiece respirators' (FFRs') fit, and to evaluate differences in physiologic and subjective responses between N95 FFRs and P100 FFRs. Methods Twelve subjects had physiologic monitoring and subjective perceptions monitored over 1 hour of treadmill exercise (5.6 km/h) in an environmental chamber (35°C, relative humidity 50%) wearing an N95 FFR, P100 FFR, or no respirator. Respirator quantitative fit testing was done before and after exercise. Results There was no significant difference in pass rates for both FFRs on initial fit testing, but subjects who passed were more likely to fail the postexercise test with N95 FFRs (P = .01). Wearing FFRs increased the temperature of facial skin covered by the FFR (P = .009) and breathing discomfort (P = .002). No significant differences were noted in other measured variables (heart rate, respiratory rate, oxygen saturation, transcutaneous carbon dioxide level, rectal temperature, global skin temperature, core temperature, and subjective perceptions) between controls and FFRs and between FFR models. Conclusion After 1 hour of exercise in hot, humid ambient conditions, P100 FFRs retained better fit than N95 FFRs, without additional physiologic or subjective impact. Wearing FFRs under these conditions does not add to the body's thermophysiologic or perceptual burdens.
Subject
  • Respirators
  • Thermodynamics
  • Atmospheric thermodynamics
  • Physical chemistry
  • Safety equipment
  • Lists by length
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software