About: A hybrid evolutionary model is used to propose a hierarchical homology of protein sequences to identify protein functions systematically. The proposed model offers considerable potentials, considering the inconsistency of existing methods for predicting novel proteins. Because some novel proteins might align without meaningful conserved domains, maximizing the score of sequence alignment is not the best criterion for predicting protein functions. This work presents a decision model that can minimize the cost of making a decision for predicting protein functions using the hierarchical homologies. Particularly, the model has three characteristics: (i) it is a hybrid evolutionary model with multiple fitness functions that uses genetic programming to predict protein functions on a distantly related protein family, (ii) it incorporates modified robust point matching to accurately compare all feature points using the moment invariant and thin-plate spline theorems, and (iii) the hierarchical homologies holding up a novel protein sequence in the form of a causal tree can effectively demonstrate the relationship between proteins. This work describes the comparisons of nucleocapsid proteins from the putative polyprotein SARS virus and other coronaviruses in other hosts using the model.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • A hybrid evolutionary model is used to propose a hierarchical homology of protein sequences to identify protein functions systematically. The proposed model offers considerable potentials, considering the inconsistency of existing methods for predicting novel proteins. Because some novel proteins might align without meaningful conserved domains, maximizing the score of sequence alignment is not the best criterion for predicting protein functions. This work presents a decision model that can minimize the cost of making a decision for predicting protein functions using the hierarchical homologies. Particularly, the model has three characteristics: (i) it is a hybrid evolutionary model with multiple fitness functions that uses genetic programming to predict protein functions on a distantly related protein family, (ii) it incorporates modified robust point matching to accurately compare all feature points using the moment invariant and thin-plate spline theorems, and (iii) the hierarchical homologies holding up a novel protein sequence in the form of a causal tree can effectively demonstrate the relationship between proteins. This work describes the comparisons of nucleocapsid proteins from the putative polyprotein SARS virus and other coronaviruses in other hosts using the model.
subject
  • Bioinformatics
  • Virology
  • Proteomics
  • Proteins
  • Phylogenetics
  • Computational phylogenetics
  • Molecular biology
  • Genetic programming
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software