value
| - DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA‐dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3′ to 5′ or 5′ to 3′ direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA‐unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.
|