About: Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data. In this paper, authors use a publicly available dataset, containing information on infected, recovered, and deceased patients in 406 locations over 51 days (22nd January 2020 to 12th March 2020). This dataset, intended to be a time-series dataset, is transformed into a regression dataset and used in training a multilayer perceptron (MLP) artificial neural network (ANN). The aim of training is to achieve a worldwide model of the maximal number of patients across all locations in each time unit. Hyperparameters of the MLP are varied using a grid search algorithm, with a total of 5376 hyperparameter combinations. Using those combinations, a total of 48384 ANNs are trained (16128 for each patient group—deceased, recovered, and infected), and each model is evaluated using the coefficient of determination (R2). Cross-validation is performed using K-fold algorithm with 5-folds. Best models achieved consists of 4 hidden layers with 4 neurons in each of those layers, and use a ReLU activation function, with R2 scores of 0.98599 for confirmed, 0.99429 for deceased, and 0.97941 for recovered patient models. When cross-validation is performed, these scores drop to 0.94 for confirmed, 0.781 for recovered, and 0.986 for deceased patient models, showing high robustness of the deceased patient model, good robustness for confirmed, and low robustness for recovered patient model.
subject
  • Machine learning
  • Classification algorithms
  • Regression variable selection
  • Artificial neural networks
  • Regression diagnostics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software