AttributesValues
type
value
  • The popularization of Enterprise Knowledge Graphs (EKGs) brings an opportunity to use Question Answering Systems to consult these sources using natural language. We present CONQUEST, a framework that automates much of the process of building chatbots for the Template-Based Interactive Question Answering task on EKGs. The framework automatically handles the processes of construction of the Natural Language Processing engine, construction of the question classification mechanism, definition of the system interaction flow, construction of the EKG query mechanism, and finally, the construction of the user interaction interface. CONQUEST uses a machine learning-based mechanism to classify input questions to known templates extracted from EKGs, utilizing the clarification dialog to resolve inconclusive classifications and request mandatory missing parameters. CONQUEST also evolves with question clarification: these cases define question patterns used as new examples for training.
Subject
  • Electrophysiology
  • Artificial intelligence
  • Cardiac electrophysiology
  • Dutch inventions
  • Mathematics in medicine
  • Medical tests
  • Scientific modeling
  • Natural language processing
  • Cardiac procedures
  • Electrodiagnosis
  • Computational linguistics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software