AttributesValues
type
value
  • Cleavage site prediction is an important issue in molecular biology. We present a new method that generates prediction rules for SARS-CoV protease cleavage sites. Our method includes rule extraction from a trained neural network and then enhancing the extracted rules by genetic evolution to improve its quality. Experimental results show that the method could generate new rules for cleavage site prediction, which are more general and accurate than consensus patterns.
subject
  • Artificial intelligence
  • Chemical bonding
  • Internalism and externalism
  • Econometrics
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software