AttributesValues
type
value
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and caused a pandemic. To monitor the global transmission pattern of SARS-CoV-2, it is required to constantly update the phylogenetic tree of genomic sequences with 29.9 kb, which may be time consuming. Phylogenetic analysis of SARS-CoV-2 may be accelerated by making a multiple alignment of nucleotide sequences using the CPA (combining pairwise alignments) method, in which a pairwise alignment is made for a reference and each of other sequences, and the pairwise alignments are combined into a multiple alignment. Here it is shown from the analysis of 3729 genomic sequences for SARS-CoV-2 and outgroup strains that the CPA method can produce a multiple alignment with an elevated or a reduced number of variable sites depending on the reference compared to the OMA (ordinary multiple alignment) method, which was considered to be the most reliable. In particular, the topology of the phylogenetic tree constructed from the multiple alignment made using the CPA method adopting the outgroup sequence as the reference was considerably different from that using the OMA method, suggesting that the outgroup sequence may not be suitable as the reference in the CPA method.
subject
  • Bioinformatics
  • Zoonoses
  • COVID-19
  • Computational phylogenetics
  • Identifiers
  • Markov models
  • Nucleobases
  • Polymorphism (biology)
  • Sarbecovirus
  • Chiroptera-borne diseases
  • Infraspecific virus taxa
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software