AttributesValues
type
value
  • Lately, many studies were offered to introduce the population dynamics of COVID-19. In this investigation, we extend different physical conditions of the growth by employing fractional calculus. We study a system of coupled differential equations, which describes the dynamics of the infection spreading between infected and asymptomatic styles. The healthy population properties are measured due to the social meeting. The result is associated with a macroscopic law for the population. This dynamic system is appropriate to describe the performance of growth rate of the infection and to verify if its control is appropriately employed. A unique solution, under self-mapping possessions, is investigated. Approximate solutions are presented by utilizing fractional integral of Chebyshev polynomials. Our methodology is based on the Atangana–Baleanu calculus, which provides various activity results in the simulation. We tested the suggested system by using live data. We found positive action in the graphs.
subject
  • Epidemiology
  • Infectious diseases
  • Differential equations
  • Population ecology
  • Environmental controversies
  • Human overpopulation
  • Orders of magnitude
  • Fractional calculus
  • Generalizations
  • Special hypergeometric functions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software