About: Microbiome-host interactions play significant roles in health and in various diseases including auto-immune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease pathogenesis, and provides useful leads on potential therapeutic targets. Despite the biological significance of microbe-host interactions, there is a big gap in understanding the downstream effects of these interactions on host processes. Computational methods are expected to fill this gap by generating, integrating and prioritizing predictions - as experimental detection remains challenging due to feasibility issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions between microbial and host proteins together with host molecular networks. Using the concept of network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to uncover the mechanisms by which the microbial proteins can modulate host genes which belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial protein sources (bacterial, viral etc), is freely available on GitHub (https://github.com/korcsmarosgroup/HMIpipeline).   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Microbiome-host interactions play significant roles in health and in various diseases including auto-immune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease pathogenesis, and provides useful leads on potential therapeutic targets. Despite the biological significance of microbe-host interactions, there is a big gap in understanding the downstream effects of these interactions on host processes. Computational methods are expected to fill this gap by generating, integrating and prioritizing predictions - as experimental detection remains challenging due to feasibility issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions between microbial and host proteins together with host molecular networks. Using the concept of network diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to uncover the mechanisms by which the microbial proteins can modulate host genes which belong to biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial protein sources (bacterial, viral etc), is freely available on GitHub (https://github.com/korcsmarosgroup/HMIpipeline).
Subject
  • Autoimmune diseases
  • Microorganisms
  • Philosophy of religion
  • Project management software
  • 1670s in science
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software