AttributesValues
type
value
  • In this study, a dataset of X-ray images from patients with common viral pneumonia, bacterial pneumonia, confirmed Covid-19 disease was utilized for the automatic detection of the Coronavirus disease. The point of the investigation is to assess the exhibition of cutting edge convolutional neural system structures proposed over the ongoing years for clinical picture order. In particular, the system called Transfer Learning was received. With transfer learning, the location of different variations from the norm in little clinical picture datasets is a reachable objective, regularly yielding amazing outcomes. The datasets used in this trial. Firstly, a collection of 24000 X-ray images includes 6000 images for confirmed Covid-19 disease,6000 confirmed common bacterial pneumonia and 6000 images of normal conditions. The information was gathered and expanded from the accessible X-Ray pictures on open clinical stores. The outcomes recommend that Deep Learning with X-Ray imaging may separate noteworthy biomarkers identified with the Covid-19 sickness, while the best precision, affectability, and particularity acquired is 97.83%, 96.81%, and 98.56% individually.
subject
  • Pneumonia
  • Zoonoses
  • Viral respiratory tract infections
  • Medical physics
  • COVID-19
  • Electromagnetic spectrum
  • Occupational safety and health
  • Patent law
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software