About: Abstract Ethnopharmacological relevance Disposed earthworm has been used to treat various common ailments including burns, arthritis, itching, and inflammation for thousands of years in China. As their remarkable ability to fully regenerate in a scar-free manner, regenerated tissue homogenate of amputated Eisenia fetida (E. fetida) have been considered as an excellent wound repair therapy in our previous study. We have demonstrated that regenerated earthworm (G-90’) can perform higher wound repair ability to non-regeneration tissue (G-90) through significant promotion of cutaneous wound repair in mice after their administration into wound beds. Objective In the present study, we aimed to reveal the mechanism of G-90’ and to explore a potential wound healing accelerated strategy. Methods and results Two functional proteins- HSP70 and lysozyme in G-90′ were confirmed by cross-identification of LC-MS/MS and transcriptome analyses. Followed with semi-quantitative PCR and western blot, their expression were validated to up-regulate in 3-day regenerated tissues (G-90’). Conclusion This study implies the therapeutic potency of G-90’ for wound recovery and provides a new strategy to assess other natural materials targeting wound healing with the tail-amputated E .fetida as a model organism.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Ethnopharmacological relevance Disposed earthworm has been used to treat various common ailments including burns, arthritis, itching, and inflammation for thousands of years in China. As their remarkable ability to fully regenerate in a scar-free manner, regenerated tissue homogenate of amputated Eisenia fetida (E. fetida) have been considered as an excellent wound repair therapy in our previous study. We have demonstrated that regenerated earthworm (G-90’) can perform higher wound repair ability to non-regeneration tissue (G-90) through significant promotion of cutaneous wound repair in mice after their administration into wound beds. Objective In the present study, we aimed to reveal the mechanism of G-90’ and to explore a potential wound healing accelerated strategy. Methods and results Two functional proteins- HSP70 and lysozyme in G-90′ were confirmed by cross-identification of LC-MS/MS and transcriptome analyses. Followed with semi-quantitative PCR and western blot, their expression were validated to up-regulate in 3-day regenerated tissues (G-90’). Conclusion This study implies the therapeutic potency of G-90’ for wound recovery and provides a new strategy to assess other natural materials targeting wound healing with the tail-amputated E .fetida as a model organism.
subject
  • Healing
  • Animal anatomy
  • Soft tissue
  • Surgical specialties
  • Skin physiology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software