About: Abstract Clinical trials of gene therapy for cystic fibrosis suggest that current levels of gene transfer efficiency are probably too low to result in clinical benefit, largely as a result of the barriers faced by gene transfer vectors within the airways. The respiratory epithelium has evolved a complex series of extracellular barriers (mucus, lack of receptors, immune surveillance, etc.) aimed at preventing penetration of lumenally delivered materials, including gene therapy vectors. In addition, once in the cell, further hurdles have to be overcome, including DNA degradation, nuclear import and the ability to maintain long-term transgene expression. Strategies to overcome these barriers will be addressed in this review and include the use of: (i) clinically relevant adjuncts to overcome the extra- and intracellular barriers; (ii) less-conventional delivery routes, such as intravenous or in utero administration; (iii) more efficient non-viral vectors and ‘stealth’ viruses which can be re-administered; and (iv) new approaches to prolong transgene expression by means of alternative promoters or integrating vectors. These advances have the potential to improve the efficiency of gene delivery to the airway epithelium, thus making gene therapy a more realistic option for cystic fibrosis.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Clinical trials of gene therapy for cystic fibrosis suggest that current levels of gene transfer efficiency are probably too low to result in clinical benefit, largely as a result of the barriers faced by gene transfer vectors within the airways. The respiratory epithelium has evolved a complex series of extracellular barriers (mucus, lack of receptors, immune surveillance, etc.) aimed at preventing penetration of lumenally delivered materials, including gene therapy vectors. In addition, once in the cell, further hurdles have to be overcome, including DNA degradation, nuclear import and the ability to maintain long-term transgene expression. Strategies to overcome these barriers will be addressed in this review and include the use of: (i) clinically relevant adjuncts to overcome the extra- and intracellular barriers; (ii) less-conventional delivery routes, such as intravenous or in utero administration; (iii) more efficient non-viral vectors and ‘stealth’ viruses which can be re-administered; and (iv) new approaches to prolong transgene expression by means of alternative promoters or integrating vectors. These advances have the potential to improve the efficiency of gene delivery to the airway epithelium, thus making gene therapy a more realistic option for cystic fibrosis.
Subject
  • Virology
  • 1989 introductions
  • Channelopathies
  • Gene delivery
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software