About: Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma, yet fully efficacious treatments are missing. In this study, we investigated RNA interference (RNAi), a specific gene silencing process mediated by small interfering RNA (siRNA) duplexes, as an antiviral strategy against HCV. Synthetic siRNAs were designed to target conserved sequences of the HCV 5′ nontranslated region (NTR) located in a functional, stem–loop structured domain of the HCV internal ribosome entry site (IRES), which is crucial for initiation of polyprotein translation. Several siRNAs dramatically reduced or even abrogated the replication of selectable subgenomic HCV replicons upon cotransfection of human hepatoma cells with viral target and siRNAs, or upon transfection of cells supporting autonomous replication of HCV replicon with siRNAs. Importantly, three siRNAs also proved capable of strongly inhibiting virus production in cell culture. One siRNA, targeting a sequence that is highly conserved across all genotypes and forms a critical pseudoknot structure involved in translation, was identified as the most promising therapeutic candidate. These results indicate that the HCV life cycle can be efficiently blocked by using properly-designed siRNAs that target functionally important, highly conserved sequences of the HCV IRES. This finding offers a novel approach towards developing IRES-based antiviral treatment for chronic HCV infections.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular carcinoma, yet fully efficacious treatments are missing. In this study, we investigated RNA interference (RNAi), a specific gene silencing process mediated by small interfering RNA (siRNA) duplexes, as an antiviral strategy against HCV. Synthetic siRNAs were designed to target conserved sequences of the HCV 5′ nontranslated region (NTR) located in a functional, stem–loop structured domain of the HCV internal ribosome entry site (IRES), which is crucial for initiation of polyprotein translation. Several siRNAs dramatically reduced or even abrogated the replication of selectable subgenomic HCV replicons upon cotransfection of human hepatoma cells with viral target and siRNAs, or upon transfection of cells supporting autonomous replication of HCV replicon with siRNAs. Importantly, three siRNAs also proved capable of strongly inhibiting virus production in cell culture. One siRNA, targeting a sequence that is highly conserved across all genotypes and forms a critical pseudoknot structure involved in translation, was identified as the most promising therapeutic candidate. These results indicate that the HCV life cycle can be efficiently blocked by using properly-designed siRNAs that target functionally important, highly conserved sequences of the HCV IRES. This finding offers a novel approach towards developing IRES-based antiviral treatment for chronic HCV infections.
Subject
  • Virology
  • RNA
  • Genetics
  • Hepatitis C virus
  • RNA interference
  • Reproduction
  • Molecular biology
  • Hepaciviruses
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software