AttributesValues
type
value
  • Predicting process behavior in terms of the next activity to be executed and/or its timestamp can be crucial, e.g., to avoid impeding compliance violations or performance problems. Basically, two prediction techniques are conceivable, i.e., global and local techniques. Global techniques consider all process behavior at once, but might suffer from noise. Local techniques consider a certain subset of the behavior, but might loose the “big picture”. A combination of both techniques is promising to balance out each others drawbacks, but exists so far only in an implicit and unsystematic way. We propose LoGo as a systematic combined approach based on a novel global technique and an extended local one. LoGo is evaluated based on real life execution logs from multiple domains, outperforming nine comparison approaches. Overall, LoGo results in explainable prediction models and high prediction quality.
Subject
  • Basic concepts in set theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software