AttributesValues
type
value
  • One of the main problems in quantum information systems is the presence of errors due to noise. Many quantum error correcting codes have been designed to deal with generic errors. In this paper we construct new stabilizer codes able to correct a given number [Formula: see text] of generic Pauli [Formula: see text] and [Formula: see text] errors, plus a number [Formula: see text] of Pauli errors of a specified type (e.g., [Formula: see text] errors). These codes can be of interest when the quantum channel is asymmetric, i.e., when some types of error occur more frequently than others. For example, we design a [[9, 1]] quantum error correcting code able to correct up to one generic qubit error plus one [Formula: see text] error in arbitrary positions. According to a generalized version of the quantum Hamming bound, it is the shortest code with this error correction capability.
Subject
  • Lie groups
  • Error detection and correction
  • Australian inventions
  • Fault-tolerant computer systems
  • Quantum information science
  • Quantum computing
  • Quantum information theory
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software