About: With the advances of graph analytics, preserving privacy in publishing graph data becomes an important task. However, graph data is highly sensitive to structural changes. Perturbing graph data for achieving differential privacy inevitably leads to inject a large amount of noise and the utility of anonymized graphs is severely limited. In this paper, we propose a microaggregation-based framework for graph anonymization which meets the following requirements: (1) The topological structures of an original graph can be preserved at different levels of granularity; (2) [Formula: see text]-differential privacy is guaranteed for an original graph through adding controlled perturbation to its edges (i.e., edge privacy); (3) The utility of graph data is enhanced by reducing the magnitude of noise needed to achieve [Formula: see text]-differential privacy. Within the proposed framework, we further develop a simple yet effective microaggregation algorithm under a distance constraint. We have empirically verified the noise reduction and privacy guarantee of our proposed algorithm on three real-world graph datasets. The experiments show that our proposed framework can significantly reduce noise added to achieve [Formula: see text]-differential privacy over graph data, and thus enhance the utility of anonymized graphs.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • With the advances of graph analytics, preserving privacy in publishing graph data becomes an important task. However, graph data is highly sensitive to structural changes. Perturbing graph data for achieving differential privacy inevitably leads to inject a large amount of noise and the utility of anonymized graphs is severely limited. In this paper, we propose a microaggregation-based framework for graph anonymization which meets the following requirements: (1) The topological structures of an original graph can be preserved at different levels of granularity; (2) [Formula: see text]-differential privacy is guaranteed for an original graph through adding controlled perturbation to its edges (i.e., edge privacy); (3) The utility of graph data is enhanced by reducing the magnitude of noise needed to achieve [Formula: see text]-differential privacy. Within the proposed framework, we further develop a simple yet effective microaggregation algorithm under a distance constraint. We have empirically verified the noise reduction and privacy guarantee of our proposed algorithm on three real-world graph datasets. The experiments show that our proposed framework can significantly reduce noise added to achieve [Formula: see text]-differential privacy over graph data, and thus enhance the utility of anonymized graphs.
Subject
  • Anonymity
  • Data protection
  • Information privacy
  • Differential privacy
  • Theory of cryptography
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software