AttributesValues
type
value
  • Over the last years, Indoor Localization Systems (ILS) evolved, due to the inability of Global Positioning Systems (GPS) to localize in indoor environments. A variety of studies tackle indoor localization with technologies such as Bluetooth Beacons and RFID that require costly installation, or techniques such as Google Wi-Fi/Cell DB and fingerprinting that leverage from the already existing Wi-FI and telecommunication infrastructure. Additionally, recent studies attempt to solve the same problem using Bio-Inspired techniques, such as Artificial Neural Networks (ANNs) and Deep Neural Networks (DNN). In this paper, we introduce a Multi-Objective Optimization Radiomap Modelling (MOO-RM) based ILS. The MOO-RM ILS divides the dataset into clusters using a K-Means algorithm and trains ANN models on the data of each cluster. The resulting models are fed into a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), which minimizes the required storage space and the localization error, simultaneously. Our experimental studies demonstrate the superiority of the proposed approach on real datasets of Wi-Fi traces with respect to various existing techniques.
subject
  • Global Positioning System
  • Technology companies based in the San Francisco Bay Area
  • Multinational companies headquartered in the United States
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software