AttributesValues
type
value
  • Radial basis functions (RBF) are widely used in many areas especially for interpolation and approximation of scattered data, solution of ordinary and partial differential equations, etc. The RBF methods belong to meshless methods, which do not require tessellation of the data domain, i.e. using Delaunay triangulation, in general. The RBF meshless methods are independent of a dimensionality of the problem solved and they mostly lead to a solution of a linear system of equations. Generally, the approximation is formed using the principle of unity as a sum of weighed RBFs. These two classes of RBFs: global and local, mostly having a shape parameter determining the RBF behavior. In this contribution, we present preliminary results of the estimation of a vector of “optimal” shape parameters, which are different for each RBF used in the final formula for RBF approximation. The preliminary experimental results proved, that there are many local optima and if an iteration process is to be used, no guaranteed global optima are obtained. Therefore, an iterative process, e.g. used in partial differential equation solutions, might find a local optimum, which can be far from the global optima.
subject
  • Numerical analysis
  • Computational fluid dynamics
  • Concepts in physics
  • Differential equations
  • Artificial neural networks
  • Interpolation
  • Statistical parameters
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software