About: Transport emissions need to be drastically decreased in order to put Europe on a path towards a long-term climate neutrality. Commercial transport, and especially last mile delivery is expected to grow because of the rise of e-commerce. In this frame, electric light commercial vehicles (eLCVs) can be a promising low-emission solution. Literature holistically analysing the potential of eLCVs as well as related support policies is sparse. This paper attempts to close this research gap. To this aim, the total cost of ownership (TCO) comparisons for eLCVs and benchmark vehicles are performed and support measures that target the improvement of the eLCV TCO are analysed. Various eLCV deployment scenarios until 2030 are explored and their impact on carbon dioxide (CO(2)) and other pollutant emissions as well as pollutant concentrations are calculated. It is found that while in several European Union (EU) countries eLCVs are already cost competitive, because of fiscal support, some remaining market barriers need to be overcome to pave the way to mass market deployment of eLCVs. High penetration of eLCVs alone can lead to a reduction of total transport CO(2) emissions by more than 3% by 2030. For pollutant emissions, such as nitrogen oxide (NO(x)) and particulate matter (PM), the reduction would be equal or even higher. In the case of PM, this can translate to reductions in concentrations by nearly 2% in several urban areas by 2030. Carefully designed support policies could help to ensure that the potential of eLCVs as a low-emission alternative is fully leveraged in the EU.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Transport emissions need to be drastically decreased in order to put Europe on a path towards a long-term climate neutrality. Commercial transport, and especially last mile delivery is expected to grow because of the rise of e-commerce. In this frame, electric light commercial vehicles (eLCVs) can be a promising low-emission solution. Literature holistically analysing the potential of eLCVs as well as related support policies is sparse. This paper attempts to close this research gap. To this aim, the total cost of ownership (TCO) comparisons for eLCVs and benchmark vehicles are performed and support measures that target the improvement of the eLCV TCO are analysed. Various eLCV deployment scenarios until 2030 are explored and their impact on carbon dioxide (CO(2)) and other pollutant emissions as well as pollutant concentrations are calculated. It is found that while in several European Union (EU) countries eLCVs are already cost competitive, because of fiscal support, some remaining market barriers need to be overcome to pave the way to mass market deployment of eLCVs. High penetration of eLCVs alone can lead to a reduction of total transport CO(2) emissions by more than 3% by 2030. For pollutant emissions, such as nitrogen oxide (NO(x)) and particulate matter (PM), the reduction would be equal or even higher. In the case of PM, this can translate to reductions in concentrations by nearly 2% in several urban areas by 2030. Carefully designed support policies could help to ensure that the potential of eLCVs as a low-emission alternative is fully leveraged in the EU.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software