About: Both domestic emissions and transported pollutants from neighboring countries affect the ambient fine particulate matter (PM(2.5)) concentration of Seoul, Korea. Diverse measures to control the coronavirus disease 2019 (COVID-19), such as social distancing and increased telecommuting in Korea and the stringent lockdown measures of China, may reduce domestic emissions and levels of transported pollutants, respectively. In addition, wearing a particulate-filtering respirator may have decreased the absolute PM(2.5) exposure level for individuals. Therefore, this study estimated the acute health benefits of PM(2.5) reduction and changes in public behavior during the COVID-19 crisis in Seoul, Korea. To calculate the mortality burden attributable to PM(2.5), we obtained residents’ registration data, mortality data, and air pollution monitoring data for Seoul from publicly available databases. Relative risks were derived from previous time-series studies. We used the attributable fraction to estimate the number of excessive deaths attributable to acute PM(2.5) exposure during January to April, yearly, from 2016 to 2020, and the number of mortalities avoided from PM(2.5) reduction and respirator use observed in 2020. The average PM(2.5) concentration from January to April in 2020 (25.6 μg/m(3)) was the lowest in the last 5 years. At least −4.1 μg/m(3) (95% CI: −7.2, −0.9) change in ambient PM(2.5) in Seoul was observed in 2020 compared to the previous 4 years. Overall, 37.6 (95% CI: 32.6, 42.5) non-accidental; 7.0 (95% CI: 5.7, 8.4) cardiovascular; and 4.7 (95% CI: 3.4, 6.1) respiratory mortalities were avoided due to PM(2.5) reduction in 2020. By considering the effects of particulate respirator, decreases of 102.5 (95% CI: 89.0, 115.9) non-accidental; 19.1 (95% CI: 15.6, 22.9) cardiovascular; and 12.9 (95% CI: 9.2, 16.5) respiratory mortalities were estimated. We estimated that 37 lives were saved due to the PM(2.5) reduction related to COVID-19 in Seoul, Korea. The health benefit may be greater due to the popular use of particulate-filtering respirators during the COVID-19 crisis. Future studies with daily mortality data are needed to verify our study estimates.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Both domestic emissions and transported pollutants from neighboring countries affect the ambient fine particulate matter (PM(2.5)) concentration of Seoul, Korea. Diverse measures to control the coronavirus disease 2019 (COVID-19), such as social distancing and increased telecommuting in Korea and the stringent lockdown measures of China, may reduce domestic emissions and levels of transported pollutants, respectively. In addition, wearing a particulate-filtering respirator may have decreased the absolute PM(2.5) exposure level for individuals. Therefore, this study estimated the acute health benefits of PM(2.5) reduction and changes in public behavior during the COVID-19 crisis in Seoul, Korea. To calculate the mortality burden attributable to PM(2.5), we obtained residents’ registration data, mortality data, and air pollution monitoring data for Seoul from publicly available databases. Relative risks were derived from previous time-series studies. We used the attributable fraction to estimate the number of excessive deaths attributable to acute PM(2.5) exposure during January to April, yearly, from 2016 to 2020, and the number of mortalities avoided from PM(2.5) reduction and respirator use observed in 2020. The average PM(2.5) concentration from January to April in 2020 (25.6 μg/m(3)) was the lowest in the last 5 years. At least −4.1 μg/m(3) (95% CI: −7.2, −0.9) change in ambient PM(2.5) in Seoul was observed in 2020 compared to the previous 4 years. Overall, 37.6 (95% CI: 32.6, 42.5) non-accidental; 7.0 (95% CI: 5.7, 8.4) cardiovascular; and 4.7 (95% CI: 3.4, 6.1) respiratory mortalities were avoided due to PM(2.5) reduction in 2020. By considering the effects of particulate respirator, decreases of 102.5 (95% CI: 89.0, 115.9) non-accidental; 19.1 (95% CI: 15.6, 22.9) cardiovascular; and 12.9 (95% CI: 9.2, 16.5) respiratory mortalities were estimated. We estimated that 37 lives were saved due to the PM(2.5) reduction related to COVID-19 in Seoul, Korea. The health benefit may be greater due to the popular use of particulate-filtering respirators during the COVID-19 crisis. Future studies with daily mortality data are needed to verify our study estimates.
Subject
  • Air pollution
  • Prediction
  • Northeast Asia
  • Technology forecasting
  • Climate forcing
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software