AttributesValues
type
value
  • The rennin–angiotensin–aldosterone system (RAAS) has been well documented in regulating blood pressure, fluid volume, and sodium balance. Overactivity of RAAS promotes both systemic and regional glomerular capillary hypertension, which could induce hemodynamic injury to the glomerulus, leading to kidney damage and renal fibrosis via profibrotic and proinflammatory pathway. Therefore, the use of RAAS inhibitors (i.e., ACEIs, ARBs, and MRAs) as the optional therapy has been demonstrated to prevent proteinuria, and kidney fibrosis and slow the decline of renal function effectively in the process of kidney disease during the last few decades. Recently, several new components of the RAAS have been discovered, including ACE2 and the corresponding ACE2/Ang (1-7)/Mas axis, which are also present in the kidney. Besides the classic RAAS inhibitors target the angiotensin-AT1-aldosterone axis, with the expanding knowledge about RAAS, a number of potential therapeutic targets in this system is emerging. Newer agents that are more specific are being developed. The present chapter outlines the insights of the RAAS agents (classic RAAS antagonists/the new RAAS drugs), and discusses its clinical application in the combat of renal fibrosis.
subject
  • Kidney
  • Endocrinology
  • Computational fluid dynamics
  • Cardiovascular physiology
  • Human homeostasis
  • Endocrine-related cutaneous conditions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software