AttributesValues
type
value
  • A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time – dynamic community detection – and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and find that the Riemannian methods are generally better suited to dynamic community detection. Next steps with the Riemannian framework include producing a Riemannian least-squares regression method for working with noisy data and developing support methods, such as spectral sparsification, to improve the scalability of our current methods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s41109-018-0059-2) contains supplementary material, which is available to authorized users.
subject
  • Networks
  • Riemannian geometry
  • Graph theory
  • Geometry
  • Basic concepts in set theory
  • Bernhard Riemann
  • Directed graphs
  • Interpolation
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software