About: The purpose of this paper is to determine the dispersion and distribution characteristics of exhaled airflow for accurate prediction of disease transmission. The development of airflow dynamics of human exhalation was characterized using nonhazardous schlieren photography technique, providing a visualization and quantification of turbulent exhaled airflow from 18 healthy human subjects whilst standing and lying. The flow shape of each breathing pattern was characterized by two angles and averaged values of 18 subjects. Two exhaled air velocities, u(m) and u(p), were measured and compared. The mean peak centerline velocity, u(m) was found to decay correspondingly with increasing horizontal distance x in a form of power function. The mean propagation velocity, u(p) was found to correlate with physiological parameters of human subjects. This was always lower than u(m) at the mouth/nose opening, due to a vortex like airflow in front of a single exhalation cycle. When examining the talking and breathing process between two persons, the potential infectious risk was found to depend on their breathing patterns and spatial distribution of their exhaled air. Our study when combined with information on generation and distributions of pathogens could provide a prediction method and control strategy to minimize infection risk between persons in indoor environments.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The purpose of this paper is to determine the dispersion and distribution characteristics of exhaled airflow for accurate prediction of disease transmission. The development of airflow dynamics of human exhalation was characterized using nonhazardous schlieren photography technique, providing a visualization and quantification of turbulent exhaled airflow from 18 healthy human subjects whilst standing and lying. The flow shape of each breathing pattern was characterized by two angles and averaged values of 18 subjects. Two exhaled air velocities, u(m) and u(p), were measured and compared. The mean peak centerline velocity, u(m) was found to decay correspondingly with increasing horizontal distance x in a form of power function. The mean propagation velocity, u(p) was found to correlate with physiological parameters of human subjects. This was always lower than u(m) at the mouth/nose opening, due to a vortex like airflow in front of a single exhalation cycle. When examining the talking and breathing process between two persons, the potential infectious risk was found to depend on their breathing patterns and spatial distribution of their exhaled air. Our study when combined with information on generation and distributions of pathogens could provide a prediction method and control strategy to minimize infection risk between persons in indoor environments.
subject
  • Respiration
  • Infectious diseases
  • Rotation
  • Exponentials
  • Reflexes
  • Respiratory physiology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software