About: BACKGROUND AND PURPOSE: Most antiviral therapies directed against herpes simplex virus (HSV) infections are limited to a small group of nucleoside analogues that target the viral polymerase. Extensive clinical use of these drugs has led to the emergence of resistant viral strains, mainly in immunocompromised patients. This highlights the need for the development of new anti-herpesviral drugs with novel targets. Herein the effects of a plant anthraquinone, emodin, on the HSV-1 alkaline nuclease activity and virus yields were investigated. EXPERIMENTAL APPROACH: HSV-1 alkaline nuclease activity was examined by nuclease activity assay. Inhibition of virus yields was measured by plaque reduction assay and immunohistochemical staining. Interaction between emodin and alkaline nuclease was analysed by docking technology. KEY RESULTS: Emodin specifically inhibited the nuclease activity of HSV-1 UL12 alkaline nuclease in a biochemical assay. Plaque reduction assay revealed that emodin reduced the plaque formation with an EC(50) of 21.5±4.4 μM. Immunohistochemical staining using the anti-nucleocapsid protein antibody demonstrated that emodin induced the accumulation of viral nucleocapsids in the nucleus in a dose-dependent manner. Docking analysis further suggested that the inhibitory effect of emodin on the UL12 activity may result from the interaction between emodin and critical catalytic amino acid residues of UL12. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that emodin is a potent anti-HSV agent that inhibits the yields of HSV-1 via the suppression of a novel target, UL12.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • BACKGROUND AND PURPOSE: Most antiviral therapies directed against herpes simplex virus (HSV) infections are limited to a small group of nucleoside analogues that target the viral polymerase. Extensive clinical use of these drugs has led to the emergence of resistant viral strains, mainly in immunocompromised patients. This highlights the need for the development of new anti-herpesviral drugs with novel targets. Herein the effects of a plant anthraquinone, emodin, on the HSV-1 alkaline nuclease activity and virus yields were investigated. EXPERIMENTAL APPROACH: HSV-1 alkaline nuclease activity was examined by nuclease activity assay. Inhibition of virus yields was measured by plaque reduction assay and immunohistochemical staining. Interaction between emodin and alkaline nuclease was analysed by docking technology. KEY RESULTS: Emodin specifically inhibited the nuclease activity of HSV-1 UL12 alkaline nuclease in a biochemical assay. Plaque reduction assay revealed that emodin reduced the plaque formation with an EC(50) of 21.5±4.4 μM. Immunohistochemical staining using the anti-nucleocapsid protein antibody demonstrated that emodin induced the accumulation of viral nucleocapsids in the nucleus in a dose-dependent manner. Docking analysis further suggested that the inhibitory effect of emodin on the UL12 activity may result from the interaction between emodin and critical catalytic amino acid residues of UL12. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that emodin is a potent anti-HSV agent that inhibits the yields of HSV-1 via the suppression of a novel target, UL12.
Subject
  • Virology
  • Histology
  • Laboratory techniques
  • Resorcinols
  • Sexually transmitted diseases and infections
  • Simplexviruses
  • Trihydroxyanthraquinones
  • Virucides
  • Unaccepted virus taxa
  • 3-hydroxypropenals within hydroxyquinones
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software