About: Abstract The nucleocapsid (N) protein of mouse hepatitis virus (MHV) and the cellular heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) are RNA-binding proteins, binding to the leader RNA and the intergenic sequence of MHV negative-strand template RNAs, respectively. Previous studies have suggested a role for both N and hnRNP-A1 proteins in MHV RNA synthesis. However, it is not known whether the two proteins can interact with each other. Here we employed a series of methods to determine their interactions both in vitro and in vivo. Both N and hnRNP-A1 genes were cloned and expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins, and their interactions were determined with a GST-binding assay. Results showed that N protein directly and specifically interacted with hnRNP-A1 in vitro. To dissect the protein-binding domain on the N protein, 15 deletion constructs were made by PCR and expressed as GST fusion proteins. Two hnRNP-A1-binding sites were identified on N protein: site A is located at amino acids 1 to 292 and site B at amino acids 392 to 455. In addition, we found that N protein interacted with itself and that the self-interacting domain coincided with site A but not with site B. Using a fluorescence double-staining technique, we showed that N protein colocalized with hnRNP-A1 in the cytoplasm, particularly in the perinuclear region, of MHV-infected cells, where viral RNA replication/transcription occurs. The N protein and hnRNP-A1 were coimmunoprecipitated from the lysates of MHV-infected cells either by an N- or by an hnRNP-A1-specific monoclonal antibody, indicating a physical interaction between N and hnRNP-A1 proteins. Furthermore, using the yeast two-hybrid system, we showed that N protein interacted with hnRNP-A1 in vivo. These results thus establish that MHV N protein interacts with hnRNP-A1 both in vitro and in vivo.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The nucleocapsid (N) protein of mouse hepatitis virus (MHV) and the cellular heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) are RNA-binding proteins, binding to the leader RNA and the intergenic sequence of MHV negative-strand template RNAs, respectively. Previous studies have suggested a role for both N and hnRNP-A1 proteins in MHV RNA synthesis. However, it is not known whether the two proteins can interact with each other. Here we employed a series of methods to determine their interactions both in vitro and in vivo. Both N and hnRNP-A1 genes were cloned and expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins, and their interactions were determined with a GST-binding assay. Results showed that N protein directly and specifically interacted with hnRNP-A1 in vitro. To dissect the protein-binding domain on the N protein, 15 deletion constructs were made by PCR and expressed as GST fusion proteins. Two hnRNP-A1-binding sites were identified on N protein: site A is located at amino acids 1 to 292 and site B at amino acids 392 to 455. In addition, we found that N protein interacted with itself and that the self-interacting domain coincided with site A but not with site B. Using a fluorescence double-staining technique, we showed that N protein colocalized with hnRNP-A1 in the cytoplasm, particularly in the perinuclear region, of MHV-infected cells, where viral RNA replication/transcription occurs. The N protein and hnRNP-A1 were coimmunoprecipitated from the lysates of MHV-infected cells either by an N- or by an hnRNP-A1-specific monoclonal antibody, indicating a physical interaction between N and hnRNP-A1 proteins. Furthermore, using the yeast two-hybrid system, we showed that N protein interacted with hnRNP-A1 in vivo. These results thus establish that MHV N protein interacts with hnRNP-A1 both in vitro and in vivo.
Subject
  • Virology
  • Proteomics
  • Histology
  • Gene expression
  • Bacteria described in 1919
  • Molecular biology
  • Protein complexes
  • Ribonucleoproteins
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software