About: Automatic and rapid screening of COVID-19 from the chest X-ray images has become an urgent need in this pandemic situation of SARS-CoV-2 worldwide in 2020. However, accurate and reliable screening of patients is a massive challenge due to the discrepancy between COVID-19 and other viral pneumonia in X-ray images. In this paper, we design a new stacked convolutional neural network model for the automatic diagnosis of COVID-19 disease from the chest X-ray images. We obtain different sub-models from the VGG19 and developed a 30-layered CNN model (named as CovNet30) during the training, and obtained sub-models are stacked together using logistic regression. The proposed CNN model combines the discriminating power of the different CNN`s sub-models and classifies chest X-ray images into COVID-19, Normal, and Pneumonia classes. In addition, we generate X-ray images dataset referred to as COVID19CXr, which includes 2764 chest x-ray images of 1768 patients from the three publicly available data repositories. The proposed stacked CNN achieves an accuracy of 92.74%, the sensitivity of 93.33%, PPV of 92.13%, and F1-score of 0.93 for the classification of X-ray images. Our proposed approach shows its superiority over the existing methods for the diagnosis of the COVID-19 from the X-ray images.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Automatic and rapid screening of COVID-19 from the chest X-ray images has become an urgent need in this pandemic situation of SARS-CoV-2 worldwide in 2020. However, accurate and reliable screening of patients is a massive challenge due to the discrepancy between COVID-19 and other viral pneumonia in X-ray images. In this paper, we design a new stacked convolutional neural network model for the automatic diagnosis of COVID-19 disease from the chest X-ray images. We obtain different sub-models from the VGG19 and developed a 30-layered CNN model (named as CovNet30) during the training, and obtained sub-models are stacked together using logistic regression. The proposed CNN model combines the discriminating power of the different CNN`s sub-models and classifies chest X-ray images into COVID-19, Normal, and Pneumonia classes. In addition, we generate X-ray images dataset referred to as COVID19CXr, which includes 2764 chest x-ray images of 1768 patients from the three publicly available data repositories. The proposed stacked CNN achieves an accuracy of 92.74%, the sensitivity of 93.33%, PPV of 92.13%, and F1-score of 0.93 for the classification of X-ray images. Our proposed approach shows its superiority over the existing methods for the diagnosis of the COVID-19 from the X-ray images.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • Prediction
  • COVID-19
  • Occupational safety and health
  • 24-hour television news channels in the United States
  • Recipients of the Four Freedoms Award
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software