About: Abstract Background Whether or not short-term exposure to particulate matter <2.5 μm in diameter (PM2.5) increases the risk of psychiatric emergency diseases is unclear. Methods The study was performed in a metropolis from January 2015 to December 2016. The exposure was PM2.5, and the confounders were weather (temperature and humidity) and other pollutants (PM10, SO2, CO, O3, and NO2). The outcomes were emergency department (ED) visits with psychiatric disease codes (F00-F99 in ICD10 codes). General additive models were used for the statistical analysis to calculate the adjusted relative risks (ARRs) and 95% confidence intervals (95% CIs) for the daily number of ED visits with a lag of 1 to 3 days following a 10 μg/m3 increase in PM2.5. Results During the study period, a total of 67,561 ED visits for psychiatric diseases were identified and tested for association with PM2.5. Daily ED visits for all psychiatric diseases were not associated with PM2.5 in the model that was not adjusted for other pollutants. The ARR (95% CI) in the model adjusted for SO2 was 1.011 (1.002–1.021) by 10 μg/m3 of PM2.5 on Lag 1 for all psychiatric diseases (F00-F99). The ARR (95% CI) in the model adjusted for O3 was 1.015 (1.003–1.029) by 10 μg/m3 of PM2.5 on Lag 1 for F40-F49 (Neurotic, stress-related and somatoform disorders). Conclusion An increase in PM2.5 showed a significant association with an increase in ED visits for all psychiatric diseases (F00-F99) and for neurotic, stress-related and somatoform disorders (F40-F49) on lag day 1.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract Background Whether or not short-term exposure to particulate matter <2.5 μm in diameter (PM2.5) increases the risk of psychiatric emergency diseases is unclear. Methods The study was performed in a metropolis from January 2015 to December 2016. The exposure was PM2.5, and the confounders were weather (temperature and humidity) and other pollutants (PM10, SO2, CO, O3, and NO2). The outcomes were emergency department (ED) visits with psychiatric disease codes (F00-F99 in ICD10 codes). General additive models were used for the statistical analysis to calculate the adjusted relative risks (ARRs) and 95% confidence intervals (95% CIs) for the daily number of ED visits with a lag of 1 to 3 days following a 10 μg/m3 increase in PM2.5. Results During the study period, a total of 67,561 ED visits for psychiatric diseases were identified and tested for association with PM2.5. Daily ED visits for all psychiatric diseases were not associated with PM2.5 in the model that was not adjusted for other pollutants. The ARR (95% CI) in the model adjusted for SO2 was 1.011 (1.002–1.021) by 10 μg/m3 of PM2.5 on Lag 1 for all psychiatric diseases (F00-F99). The ARR (95% CI) in the model adjusted for O3 was 1.015 (1.003–1.029) by 10 μg/m3 of PM2.5 on Lag 1 for F40-F49 (Neurotic, stress-related and somatoform disorders). Conclusion An increase in PM2.5 showed a significant association with an increase in ED visits for all psychiatric diseases (F00-F99) and for neurotic, stress-related and somatoform disorders (F40-F49) on lag day 1.
Subject
  • Air pollution
  • Aerosols
  • Suicide
  • Visibility
  • Memory processes
  • Particulates
  • Pollutants
  • Climate forcing
  • Stable distributions
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software