About: This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • This article develops a regression framework with a symmetric tensor response and vector predictors. The existing literature involving symmetric tensor response and vector predictors proceeds by vectorizing the tensor response to a multivariate vector, thus ignoring the structural information in the tensor. A few recent approaches have proposed novel regression frameworks exploiting the structure of the symmetric tensor and assume symmetric tensor coefficients corresponding to scalar predictors to be low-rank. Although low-rank constraint on coefficient tensors are computationally efficient, they might appear to be restrictive in some real data applications. Motivated by this, we propose a novel class of regularization or shrinkage priors for the symmetric tensor coefficients. Our modeling framework a-priori expresses a symmetric tensor coefficient as sum of low rank and sparse structures, with both these structures being suitably regularized using Bayesian regularization techniques. The proposed framework allows identification of tensor nodes significantly influenced by each scalar predictor. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Empirical results in simulation studies show competitive performance of the proposed approach over its competitors.
subject
  • Evidence
  • Concepts in physics
  • Philosophical theories
  • Linear algebra
  • Tensors
  • Abstract algebra
  • Software quality
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software