value
| - In recent years, the biomedical community has witnessed a rapid scientific and technological evolution following the development and refinement of high-throughput methodologies. Concurrently and consequentially, the scientific perspective has changed from the reductionist approach of meticulously analyzing the fine details of a single component of biology, to the “holistic” approach of broadmindedly examining the globally interacting elements of biological systems. The emergence of this new way of thinking has brought about a scientific revolution in which genomics, proteomics, metabolomics and other “omics” have become the predominant tools by which large amounts of data are amassed, analyzed and applied to complex questions of biology that were previously unsolvable. This enormous transformation of basic science research and the ensuing plethora of promising data, especially in the realm of human health and disease, have unfortunately not been followed by a parallel increase in the clinical application of this information. On the contrary, the number of new potential drugs in development has been steadily decreasing, suggesting the existence of roadblocks that prevent the translation of promising research into medically relevant therapeutic or diagnostic application. In this paper we will review, in a non-inclusive fashion, several recent scientific advancements in the field of translational research, with a specific focus on how they relate to infectious disease. We will also present a current picture of the limitations and challenges that exist for translational research, as well as ways that have been proposed by the National Institutes of Health to improve the state of this field.
|