value
| - Evidence strongly suggests that SARS-CoV-2, the cause of COVID-19, can enter the brain. SARS-CoV-2 enters cells via the S1 subunit of its spike protein, and S1 can be used as a proxy for the uptake patterns and mechanisms used by the whole virus; unlike studies based on productive infection, viral proteins can be used to precisely determine pharmacokinetics and biodistribution. Here, we found that radioiodinated S1 (I-S1) readily crossed the murine blood-brain barrier (BBB). I-S1 from two commercial sources crossed the BBB with unidirectional influx constants of 0.287 ± 0.024 μL/g-min and 0.294 ± 0.032 μL/g-min and was also taken up by lung, spleen, kidney, and liver. I-S1 was uniformly taken up by all regions of the brain and inflammation induced by lipopolysaccharide reduced uptake in the hippocampus and olfactory bulb. I-S1 crossed the BBB completely to enter the parenchymal brain space, with smaller amounts retained by brain endothelial cells and the luminal surface. Studies on the mechanisms of transport indicated that I-S1 crosses the BBB by the mechanism of adsorptive transcytosis and that the murine ACE2 receptor is involved in brain and lung uptake, but not that by kidney, liver, or spleen. I-S1 entered brain after intranasal administration at about 1/10th the amount found after intravenous administration and about 0.66% of the intranasal dose entered blood. ApoE isoform or sex did not affect whole brain uptake, but had variable effects on olfactory bulb, liver, spleen, and kidney uptakes. In summary, I-S1 readily crosses the murine BBB, entering all brain regions and the peripheral tissues studied, likely by the mechanism of adsorptive transcytosis. Graphical Abstract
|