AttributesValues
type
value
  • This paper introduces a novel graph-based approach to select features from multiple textual documents. The proposed solution enables the investigation of the importance of a term into a whole corpus of documents by utilizing contemporary graph theory methods, such as community detection algorithms and node centrality measures. Compared to well-tried existing solutions, evaluation results show that the proposed approach increases the accuracy of most text classifiers employed and decreases the number of features required to achieve ‘state-of-the-art’ accuracy. Well-known datasets used for the experimentations reported in this paper include 20Newsgroups, LingSpam, Amazon Reviews and Reuters.
subject
  • Graph theory
  • Classification algorithms
  • Cluster analysis algorithms
  • Optimization algorithms and methods
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software