About: Abstract The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshift signal at the junction of the overlapping 1a and 1b open reading frames. The signal is comprised of two elements, a heptanucleotide “slip-site” and a downstream tertiary RNA structure in the form of an RNA pseudoknot. We have investigated the structure of the pseudoknot and its contribution to the frameshift process by analysing the frameshifting properties of a series of pseudoknot mutants. Our results show that the pseudoknot structure closely resembles that which can be predicted from current building rules, although base-pair formation at the region where the two pseudoknot stems are thought to stack co-axially is not a pre-requisite for efficient frameshifting. The stems, however, must be in close proximity to generate a functional structure. In general, the removal of a single base-pair contact in either stem is sufficient to reduce or abolish frameshifting. No primary sequence determinants in the stems or loops appear to be involved in the frameshift process; as long as the overall structure is maintained, frameshifting is highly efficient. Thus, small insertions into the pseudoknot loops and a deletion in loop 2 that reduced its length to the predicted functional minimum did not influence frameshifting. However, a large insertion (467 nucleotides) into loop 2 abolished frameshifting. A simple stem-loop structure with a base-paired stem of the same length and nucleotide composition as the stacked stems of the pseudoknot could not functionally replace the pseudoknot, suggesting that some particular conformational feature of the pseudoknot determines its ability to promote frameshifting.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Abstract The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshift signal at the junction of the overlapping 1a and 1b open reading frames. The signal is comprised of two elements, a heptanucleotide “slip-site” and a downstream tertiary RNA structure in the form of an RNA pseudoknot. We have investigated the structure of the pseudoknot and its contribution to the frameshift process by analysing the frameshifting properties of a series of pseudoknot mutants. Our results show that the pseudoknot structure closely resembles that which can be predicted from current building rules, although base-pair formation at the region where the two pseudoknot stems are thought to stack co-axially is not a pre-requisite for efficient frameshifting. The stems, however, must be in close proximity to generate a functional structure. In general, the removal of a single base-pair contact in either stem is sufficient to reduce or abolish frameshifting. No primary sequence determinants in the stems or loops appear to be involved in the frameshift process; as long as the overall structure is maintained, frameshifting is highly efficient. Thus, small insertions into the pseudoknot loops and a deletion in loop 2 that reduced its length to the predicted functional minimum did not influence frameshifting. However, a large insertion (467 nucleotides) into loop 2 abolished frameshifting. A simple stem-loop structure with a base-paired stem of the same length and nucleotide composition as the stacked stems of the pseudoknot could not functionally replace the pseudoknot, suggesting that some particular conformational feature of the pseudoknot determines its ability to promote frameshifting.
subject
  • RNA
  • Genetics
  • Gene expression
  • Biophysics
  • Basketball teams in Iceland
  • Cis-regulatory RNA elements
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software