About: Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide. Although both inactivated and live attenuated vaccines have been extensively used, the emergence of highly virulent strains and the recurrent outbreaks even in vaccinated farms highlight the need of effective vaccines. Engineering of genetically defined live attenuated vaccines is a rational approach for novel vaccine development. In this line, we engineered an attenuated virus based on the transmissible gastroenteritis virus (TGEV) genome, expressing a chimeric spike protein from a virulent United States (US) PEDV strain. This virus (rTGEV-RS-SPEDV) was attenuated in highly-sensitive five-day-old piglets, as infected animals did not lose weight and none of them died. In addition, the virus caused very minor tissue damage compared with a virulent virus. The rTGEV-RS-SPEDV vaccine candidate was also attenuated in three-week-old animals that were used to evaluate the protection conferred by this virus, compared with the protection induced by infection with a virulent PEDV US strain (PEDV-NVSL). The rTGEV-RS-SPEDV virus protected against challenge with a virulent PEDV strain, reducing challenge virus titers in jejunum and leading to undetectable challenge virus RNA levels in feces. The rTGEV-RS-SPEDV virus induced a humoral immune response specific for PEDV, including neutralizing antibodies. Altogether, the data indicated that rTGEV-RS-SPEDV is a promising vaccine candidate against virulent PEDV infection.
subject
  • Virology
  • Viruses
  • United States
  • Alphacoronaviruses
  • Feces
  • Swine diseases
  • 1898 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software