About: SARS-CoV is believed to originate from civets and was thought to have been eliminated as a threat after the 2003 outbreak. Here, we show that human SARS-CoV (huSARS-CoV) originated directly from bats, rather than civets, by a cross-species jump in 1991, and formed a human-adapted strain in 1998. Since then huSARS-CoV has evolved further into highly virulent strains with genotype T and a 29-nt deletion mutation, and weakly virulent strains with genotype C but without the 29-nt deletion. The former can cause pneumonia in humans and could be the major causative pathogen of the SARS outbreak, whereas the latter might not cause pneumonia in humans, but evolved the ability to co-utilize civet ACE2 as an entry receptor, leading to interspecies transmission between humans and civets. Three crucial time points - 1991, for the cross-species jump from bats to humans; 1998, for the formation of the human-adapted SARS-CoV; and 2003, when there was an outbreak of SARS in humans - were found to associate with anomalously low annual precipitation and high temperatures in Guangdong. Anti-SARS-CoV sero-positivity was detected in 20% of all the samples tested from Guangzhou children who were born after 2005, suggesting that weakly virulent huSARS-CoVs might still exist in humans. These existing but undetected SARS-CoVs have a large potential to evolve into highly virulent strains when favorable climate conditions occur, highlighting a potential risk for the reemergence of SARS.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • SARS-CoV is believed to originate from civets and was thought to have been eliminated as a threat after the 2003 outbreak. Here, we show that human SARS-CoV (huSARS-CoV) originated directly from bats, rather than civets, by a cross-species jump in 1991, and formed a human-adapted strain in 1998. Since then huSARS-CoV has evolved further into highly virulent strains with genotype T and a 29-nt deletion mutation, and weakly virulent strains with genotype C but without the 29-nt deletion. The former can cause pneumonia in humans and could be the major causative pathogen of the SARS outbreak, whereas the latter might not cause pneumonia in humans, but evolved the ability to co-utilize civet ACE2 as an entry receptor, leading to interspecies transmission between humans and civets. Three crucial time points - 1991, for the cross-species jump from bats to humans; 1998, for the formation of the human-adapted SARS-CoV; and 2003, when there was an outbreak of SARS in humans - were found to associate with anomalously low annual precipitation and high temperatures in Guangdong. Anti-SARS-CoV sero-positivity was detected in 20% of all the samples tested from Guangzhou children who were born after 2005, suggesting that weakly virulent huSARS-CoVs might still exist in humans. These existing but undetected SARS-CoVs have a large potential to evolve into highly virulent strains when favorable climate conditions occur, highlighting a potential risk for the reemergence of SARS.
subject
  • Virology
  • Membrane biology
  • Metropolitan areas of China
  • Sarbecovirus
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software