About: The food industry has many points of vulnerability in its supply chain. It currently lacks integrated crisis management and response programs to understand the importance of decision-making during and in the aftermath of a bioterrorist attack on the food supply. Computer simulations have been used successfully in other industries as training and analysis tools. This paper describes an agent-based simulation for food defense training and analysis. Production information, consumption patterns, morbidity/mortality rates, recall costs and additional information were collected and provided to a data-driven simulation to anticipate the impact of decision-making on economic and public health during a terrorist attack. A case study is given with a representative exercise involving forty industry representatives who participated in a food defense simulation. Their decisions (recall and microbiological and toxicological testing) were derived from testing results, press releases, epidemiological data, and discussions with other industry and regulatory teams. Decisions made during the simulation resulted in over 76,000 illnesses, 45 deaths, and $132 million in recall costs. The no intervention, baseline scenario estimated to result in 91,000 illnesses and 54 deaths, indicating the improved public health outcomes resulting from players’ decisions. Participants identified three key learning points: 1) communication between all groups is pertinent and challenging, 2) approaches to solve inherent food safety problems cannot be used to address food defense situations, and 3) human resource procedures regarding new hires and disgruntled employees should involve additional security measures. This computer simulation could be a valuable resource in food defense awareness and help educate companies and regulators about food defense risks and decision-making consequences.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The food industry has many points of vulnerability in its supply chain. It currently lacks integrated crisis management and response programs to understand the importance of decision-making during and in the aftermath of a bioterrorist attack on the food supply. Computer simulations have been used successfully in other industries as training and analysis tools. This paper describes an agent-based simulation for food defense training and analysis. Production information, consumption patterns, morbidity/mortality rates, recall costs and additional information were collected and provided to a data-driven simulation to anticipate the impact of decision-making on economic and public health during a terrorist attack. A case study is given with a representative exercise involving forty industry representatives who participated in a food defense simulation. Their decisions (recall and microbiological and toxicological testing) were derived from testing results, press releases, epidemiological data, and discussions with other industry and regulatory teams. Decisions made during the simulation resulted in over 76,000 illnesses, 45 deaths, and $132 million in recall costs. The no intervention, baseline scenario estimated to result in 91,000 illnesses and 54 deaths, indicating the improved public health outcomes resulting from players’ decisions. Participants identified three key learning points: 1) communication between all groups is pertinent and challenging, 2) approaches to solve inherent food safety problems cannot be used to address food defense situations, and 3) human resource procedures regarding new hires and disgruntled employees should involve additional security measures. This computer simulation could be a valuable resource in food defense awareness and help educate companies and regulators about food defense risks and decision-making consequences.
subject
  • Prediction
  • Food safety
  • Evaluation methods
  • Rajneesh movement
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software