AttributesValues
type
value
  • Models have gained the spotlight in many discussions surrounding COVID-19. The urgency for timely decisions resulted in a multitude of models as informed policy actions must be made even when so many uncertainties about the pandemic still remain. In this paper, we use machine learning algorithms to build intuitive country-level COVID-19 motion models described by death toll velocity and acceleration. Model explainability techniques provide insightful data-driven narratives about COVID-19 death toll motion models $-$ while velocity is explained by factors that are increasing/reducing death toll pace now, acceleration anticipates the effects of public health measures on slowing the death toll pace. This allows policymakers and epidemiologists to understand factors driving the outbreak and to evaluate the impacts of different public health measures. Finally, our models also predict counterfactuals in order to face the challenge of estimating what is likely to happen as a result of an action.
subject
  • Zoonoses
  • Viral respiratory tract infections
  • COVID-19
  • Artificial intelligence
  • Occupational safety and health
  • Self-driving cars
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software