About: Diseases emerging from wildlife have been the source of many major human outbreaks. Predicting key sources of these outbreaks requires an understanding of the factors that explain pathogen diversity in reservoir species. Comparative methods are powerful tools for understanding variation in pathogen diversity and rely on correcting for phylogenetic relatedness among reservoir species. We reanalysed a previously published dataset, examining the relative effects of species' traits on patterns of viral diversity in bats and rodents. We expanded on prior work by using more highly resolved phylogenies for bats and rodents and incorporating a phylogenetically controlled principal components analysis. For rodents, sympatry and torpor use were important predictors of viral richness and, as previously reported, phylogeny had minimal impact in models. For bats, in contrast to prior work, we find that phylogeny does have an effect in models. Patterns of viral diversity in bats were related to geographical distribution (i.e. latitude and range size) and life history (i.e. lifespan, body size and birthing frequency). However, the effects of these predictors were marginal relative to citation count, emphasizing that the ability to accurately assess reservoir status largely depends on sampling effort and highlighting the need for additional data in future comparative studies.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Diseases emerging from wildlife have been the source of many major human outbreaks. Predicting key sources of these outbreaks requires an understanding of the factors that explain pathogen diversity in reservoir species. Comparative methods are powerful tools for understanding variation in pathogen diversity and rely on correcting for phylogenetic relatedness among reservoir species. We reanalysed a previously published dataset, examining the relative effects of species' traits on patterns of viral diversity in bats and rodents. We expanded on prior work by using more highly resolved phylogenies for bats and rodents and incorporating a phylogenetically controlled principal components analysis. For rodents, sympatry and torpor use were important predictors of viral richness and, as previously reported, phylogeny had minimal impact in models. For bats, in contrast to prior work, we find that phylogeny does have an effect in models. Patterns of viral diversity in bats were related to geographical distribution (i.e. latitude and range size) and life history (i.e. lifespan, body size and birthing frequency). However, the effects of these predictors were marginal relative to citation count, emphasizing that the ability to accurately assess reservoir status largely depends on sampling effort and highlighting the need for additional data in future comparative studies.
part of
is abstract of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software