About: This study presents early phase detection of Coronavirus (COVID-19), which is named by World Health Organization (WHO), by machine learning methods. The detection process was implemented on abdominal Computed Tomography (CT) images. The expert radiologists detected from CT images that COVID-19 shows different behaviours from other viral pneumonia. Therefore, the clinical experts specify that COV/.ID-19 virus needs to be diagnosed in early phase. For detection of the COVID-19, four different datasets were formed by taking patches sized as 16x16, 32x32, 48x48, 64x64 from 150 CT images. The feature extraction process was applied to patches to increase the classification performance. Grey Level Co-occurrence Matrix (GLCM), Local Directional Pattern (LDP), Grey Level Run Length Matrix (GLRLM), Grey-Level Size Zone Matrix (GLSZM), and Discrete Wavelet Transform (DWT) algorithms were used as feature extraction methods. Support Vector Machines (SVM) classified the extracted features. 2-fold, 5-fold and 10-fold cross-validations were implemented during the classification process. Sensitivity, specificity, accuracy, precision, and F-score metrics were used to evaluate the classification performance. The best classification accuracy was obtained as 99.68% with 10-fold cross-validation and GLSZM feature extraction method.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • This study presents early phase detection of Coronavirus (COVID-19), which is named by World Health Organization (WHO), by machine learning methods. The detection process was implemented on abdominal Computed Tomography (CT) images. The expert radiologists detected from CT images that COVID-19 shows different behaviours from other viral pneumonia. Therefore, the clinical experts specify that COV/.ID-19 virus needs to be diagnosed in early phase. For detection of the COVID-19, four different datasets were formed by taking patches sized as 16x16, 32x32, 48x48, 64x64 from 150 CT images. The feature extraction process was applied to patches to increase the classification performance. Grey Level Co-occurrence Matrix (GLCM), Local Directional Pattern (LDP), Grey Level Run Length Matrix (GLRLM), Grey-Level Size Zone Matrix (GLSZM), and Discrete Wavelet Transform (DWT) algorithms were used as feature extraction methods. Support Vector Machines (SVM) classified the extracted features. 2-fold, 5-fold and 10-fold cross-validations were implemented during the classification process. Sensitivity, specificity, accuracy, precision, and F-score metrics were used to evaluate the classification performance. The best classification accuracy was obtained as 99.68% with 10-fold cross-validation and GLSZM feature extraction method.
Subject
  • Classification algorithms
  • Dimension reduction
  • Feature detection (computer vision)
  • Regression variable selection
  • Statistical classification
  • Statistical ratios
  • Support vector machines
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software