About: The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(−/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(−/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2(−/y)) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2(−/y) mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism.
Subject
  • Senescence
  • Cellular respiration
  • EC 3.4.17
  • Single-pass transmembrane proteins
  • Ergogenic aids
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software