About: Assessment and quantification of feature uncertainty in modeling gait pattern is crucial in clinical decision making. Automatic diagnostic systems for Cerebral Palsy gait often ignored the uncertainty factor while recognizing the gait pattern. In addition, they also suffer from limited clinical interpretability. This study establishes a low-cost data acquisition set up and proposes a state-space model where the temporal evolution of gait pattern was recognized by analyzing the feature uncertainty using Dempster-Shafer theory of evidence. An attempt was also made to quantify the degree of abnormality by proposing gait deviation indexes. Results indicate that our proposed model outperformed state-of-the-art with an overall [Formula: see text] of detection accuracy (sensitivity [Formula: see text], and specificity [Formula: see text]). In a gait cycle of a Cerebral Palsy patient, first double limb support and left single limb support were observed to be affected mainly. Incorporation of feature uncertainty in quantifying the degree of abnormality is demonstrated to be promising. Larger value of feature uncertainty was observed for the patients having higher degree of abnormality. Sub-phase wise assessment of gait pattern improves the interpretability of the results which is crucial in clinical decision making.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Assessment and quantification of feature uncertainty in modeling gait pattern is crucial in clinical decision making. Automatic diagnostic systems for Cerebral Palsy gait often ignored the uncertainty factor while recognizing the gait pattern. In addition, they also suffer from limited clinical interpretability. This study establishes a low-cost data acquisition set up and proposes a state-space model where the temporal evolution of gait pattern was recognized by analyzing the feature uncertainty using Dempster-Shafer theory of evidence. An attempt was also made to quantify the degree of abnormality by proposing gait deviation indexes. Results indicate that our proposed model outperformed state-of-the-art with an overall [Formula: see text] of detection accuracy (sensitivity [Formula: see text], and specificity [Formula: see text]). In a gait cycle of a Cerebral Palsy patient, first double limb support and left single limb support were observed to be affected mainly. Incorporation of feature uncertainty in quantifying the degree of abnormality is demonstrated to be promising. Larger value of feature uncertainty was observed for the patients having higher degree of abnormality. Sub-phase wise assessment of gait pattern improves the interpretability of the results which is crucial in clinical decision making.
subject
  • Analysis
  • Prediction
  • Decision-making
  • Disorders causing seizures
  • Neuropsychological assessment
  • »more»
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software