AttributesValues
type
value
  • The process of molecular adaptation following a cross-species virus transmission event is currently poorly understood. Here, we identified 137 protein sites that experienced deceleration in their rate of evolution along the HIV-1/SIV phylogeny, likely indicating gain-of-function and consequent adaptation. The majority of such events occurred in parallel to cross-species transmission events and varied between HIV-1 groups, indicating independent adaptation strategies. The evolutionary rate decelerations we found were particularly prominent in accessory proteins that counteract host antiviral restriction factors, suggesting that these factors are a major barrier to viral adaptation to a new host. Surprisingly, we observed that the non-pandemic HIV-1 group O, derived from gorillas, exhibited more rate deceleration events than the pandemic group M, derived from chimpanzees. We suggest that the species barrier is higher when the genetic distance of the hosts increases. Our approach paves the way for subsequent studies on cross-species transfers in other major pathogens.
Subject
  • Virology
  • HIV/AIDS
  • Causes of death
  • Discovery and invention controversies
  • IARC Group 2B carcinogens
  • Lentiviruses
  • Primates of Africa
  • Sexually transmitted diseases and infections
  • 1983 in biology
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software