About: Improving accuracy of the available predictive DNA methods is important for their wider use in routine forensic work. Information on age in the process of identification of an unknown individual may provide important hints that can speed up the process of investigation. DNA methylation markers have been demonstrated to provide accurate age estimation in forensics, but there is growing evidence that DNA methylation can be modified by various factors including diseases. We analyzed DNA methylation profile in five markers from five different genes (ELOVL2, C1orf132, KLF14, FHL2, and TRIM59) used for forensic age prediction in three groups of individuals with diagnosed medical conditions. The obtained results showed that the selected age-related CpG sites have unchanged age prediction capacity in the group of late onset Alzheimer’s disease patients. Aberrant hypermethylation and decreased prediction accuracy were found for TRIM59 and KLF14 markers in the group of early onset Alzheimer’s disease suggesting accelerated aging of patients. In the Graves’ disease patients, altered DNA methylation profile and modified age prediction accuracy were noted for TRIM59 and FHL2 with aberrant hypermethylation observed for the former and aberrant hypomethylation for the latter. Our work emphasizes high utility of the ELOVL2 and C1orf132 markers for prediction of chronological age in forensics by showing unchanged prediction accuracy in individuals affected by three diseases. The study also demonstrates that artificial neural networks could be a convenient alternative for the forensic predictive DNA analyses.   Goto Sponge  NotDistinct  Permalink

An Entity of Type : fabio:Abstract, within Data Space : wasabi.inria.fr associated with source document(s)

AttributesValues
type
value
  • Improving accuracy of the available predictive DNA methods is important for their wider use in routine forensic work. Information on age in the process of identification of an unknown individual may provide important hints that can speed up the process of investigation. DNA methylation markers have been demonstrated to provide accurate age estimation in forensics, but there is growing evidence that DNA methylation can be modified by various factors including diseases. We analyzed DNA methylation profile in five markers from five different genes (ELOVL2, C1orf132, KLF14, FHL2, and TRIM59) used for forensic age prediction in three groups of individuals with diagnosed medical conditions. The obtained results showed that the selected age-related CpG sites have unchanged age prediction capacity in the group of late onset Alzheimer’s disease patients. Aberrant hypermethylation and decreased prediction accuracy were found for TRIM59 and KLF14 markers in the group of early onset Alzheimer’s disease suggesting accelerated aging of patients. In the Graves’ disease patients, altered DNA methylation profile and modified age prediction accuracy were noted for TRIM59 and FHL2 with aberrant hypermethylation observed for the former and aberrant hypomethylation for the latter. Our work emphasizes high utility of the ELOVL2 and C1orf132 markers for prediction of chronological age in forensics by showing unchanged prediction accuracy in individuals affected by three diseases. The study also demonstrates that artificial neural networks could be a convenient alternative for the forensic predictive DNA analyses.
Subject
  • Autoimmune diseases
  • Epigenetics
  • DNA
  • Forensics
  • Criminology
  • Medical aspects of death
  • Heuristics
  • Applied sciences
part of
is abstract of
is hasSource of
Faceted Search & Find service v1.13.91 as of Mar 24 2020


Alternative Linked Data Documents: Sponger | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of Jul 10 2020, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (94 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software